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ABSTRACT: 
 
We present a system for the semi-automatic reconstruction of building roofs from aerial images based on a two-step approach. In a 
first step, a row of buildings is detected, and individual buildings are segmented. After the user identifies the start and end points of 
the row in one image, region-based and contour-based segmentation algorithms are applied. Both results are combined and fused 
with 3D data to obtain the 3D bounding boxes of individual buildings. The user can then correct this segmentation by splitting or 
joining segments or adjusting the width of the building row. The goal is to perform the segmentation with one click or less per 
building. The second step is the automatic reconstruction of individual building roofs. The system employs a conceptual model based 
on roof forms, such as gabled or flat roofs, and their constituents as well as a general shape model and is implemented as a rule-based 
system. It evaluates the input data against these models, builds up a higher-level description of the scene, and hypothesizes and 
verifies missing parts. With this approach, it is, thus, possible to reconstruct about three quarters of the buildings with high accuracy 
and detail without further user interaction. Results will be given for the building detection phase which forms the main part of this 
paper, as well as for the building reconstruction phase. 
 
 

1. INTRODUCTION 

The automatic 3D reconstruction of buildings and entire cities 
has been a rather popular research topic (Baillard, 2000; 
Moons, 1998; Scholze, 2003). Yet, the practical use of such 
methods has remained very limited. The reason is that the level 
of performance of an automated system needs to be very high, 
almost perfect, for it to be useful in practice. Otherwise, a 
human operator will need to go over the results quite carefully, 
in order to correct for all kinds of errors. The net effect is a 
marginal gain in productivity, at best. Therefore, it is - at least 
for the moment - important to supply semi-automatic, on-line 
solutions. This is the goal of the work described here. 
 
It has been proposed earlier to divide the task of building 
reconstruction using a two-phased approach: with a detection 
phase extracting the locations of single buildings and a 
reconstruction phase of then just a single building. The building 
detection can take into account the context in which these 
buildings are located, such as building rows in urban areas or 
detached houses in suburban areas. The building reconstruction 
benefits from the smaller images sizes and the constraints this 
brings with it for 3D reconstruction, as well as the focus on an 
individual building. Our approach is, thus, to combine a semi-
automatic building detection, requiring an acceptable, minimal 
manual interaction, with a fully-automatic building 
reconstruction.  
 
 

2. BUILDING DETECTION 

Automatic building detection in dense urban areas (Fradkin, 
2001) still requires manual intervention in order to improve the 
results. We therefore accepted the necessity of some degree of 
user interaction and build our system around it. The central idea 
for efficient semi-automatic detection is the concept of a 
building row. A building row is a number of buildings that are 
aligned along a street, that share a common general direction, 

and that are of similar height. This assumption is realistic in 
urban European areas where many buildings are arranged as 
city blocks. Such a building row can be easily identified and the 
segmentation of such a row into individual buildings can be 
largely automated. 
 
Standard contour extraction in 2D and subsequent line segment 
reconstruction in 3D is performed beforehand in multiple, 
overlapping images, and serves as input data for the automatic 
procedures.  The detection starts with the user identifying a 
building row. The system then perform an automatic section of 
the row, that is determining its exact orientation, and 
approximate width and height range, and, most importantly, the 
start and end parameter of each building along the row. The 
user has afterwards the chance to verify and, if necessary, 
correct the segmentation before sending it of for automatic 
reconstruction. 
 

 
 

Figure 1.  Image from the Brussels data set 



 
 

2.1 Manual Initialization 

The user determines a building row by clicking once on the first 
and on the last building of the row in only one image. The 
manually picked building row line linking the two points 
selected by the user should be approximately parallel to the 
main orientation of the building row. The angle of this line will 
later be adjusted using the 2D contours in the image. 
 
2.2 Pixel-Based Segmentation 

The grayscale values of the pixels inside the strips on both sides 
along this line are analyzed by using a similar approach to 
region growing, starting with segments of high homogeneity, 
and extending them in both directions to account for the 
transition at the border of the segments. For each pixel along 
the building row line, we determine the average grayscale value 
of the image pixels within a distance of ten pixels and 
perpendicular to this line. 
 
We assume nearly homogenous building roofs with only small 
disturbances caused by chimneys and dormer windows. Thus, a 
measure for homogeneity can be automatically derived from the 
image. It is based on the average difference of the newly 
calculated values of adjacent pixels. Most of the differences of 
these values should be small, except at the borders from one 
building to the next. 
 
2.2.1 Determine Homogenous Segments: We decide for 
each pixel of the line whether it meets the homogeneity criteria 
by calculating the differences with the values of the pixels 
which are within a distance of two from it and testing these 
differences against the homogeneity measure. A segment is 
made up of an uninterrupted sequence of homogenous pixels. 
Figure 2 shows the results of the first step. Each segment is 
characterized by a begin and end pixel of the line and is 
assigned the average value of its pixels. Non-homogenous 
pixels will not be associated with any segment. 
 

 
 

Figure 2. Initial region-based segmentation 
 
2.2.2 Merge Neighboring Segments: As a result of the first 
step, homogenous regions may split into two segments due to 
small disturbances. We therefore test the average values of 
neighboring segments against the homogeneity measure, and we 
merge those segments which fulfill the test and are separated by 
three pixels or less in between them. 
 

2.2.3 Extend Segments: We take these merged segments as 
seeds for a region growing. Within the limits of the user-picked 
line, segments are enlarged pixel by pixel. Adjacent pixels are 
added to the segments given that they keep the segments 
homogenous and do not create any overlaps. We use a slightly 
relaxed homogeneity measure, as the goal is to close the gaps 
between the segments. 
 
2.2.4 Extend Outer Segments: The user has clicked 
somewhere on the first and last building of the row. In order to 
determine the correct start and end of these buildings, we 
therefore have to extend the first and last segment beyond the 
limits of the user-picked line. This extension is done again pixel 
by pixel, testing against the homogeneity measure. 
 
The goal of the pixel-based segmentation was to determine 
possible start and end points for the buildings along the 
building row. The results for one row are shown in Figure 3. 
Having too many segments rather than too few will be 
acceptable due to the merger of the results with the follow-up 
contour-based segmentation. 
 

 
 

Figure 3. Final region-based segmentation 
 
2.3 Contour-Based Segmentation 

2D contours provide a higher positioning accuracy than region 
growing. Each contour gives us a possible border between two 
segments. Contours that give rise to similar segment borders 
will be merged, thus increasing the border’s certainty value.  
 
Many contours in the vicinity of the user-picked line belong to 
the roof ridges and gutters and, thus, are parallel to the building 
row. We use these contours to perform a robust estimation of 
the direction of the building row. 
 
2.3.1 Find all appropriate contours: All contours nearby 
the building row line that are forming a minimum angle with it 
are candidates for the segmentation. The parameter is 
determined by the projection of the mid point of the contour 
onto the building row line. The search is extended beyond both 
end points of the line. Figure 4 shows all the initial 
segmentation. 
 
2.3.2 Merge segments: Each contour gave rise to a 
segmentation hypothesis. We can test now whether two 
hypotheses may be due to the same building roof border. Such 
hypotheses are merged. The test is based on our assumption of 
what the smallest significant structure of a roof is. 
 



 
 

 
 

Figure 4. Initial contour-based segmentation 
 
2.3.3 Eliminate erroneous segments: Each segment is given 
a possibility value. This value is determined by the number of 
contours participating in this segment, their total length, and 
their distance from the building row line. Segments with low 
possibility values are discarded. 
 
The results of the contour-based segmentation depicted in 
Figure 5 demonstrate that they can be usefully combined with 
the region-based segmentation. 
 

 
 

Figure 5. Final contour-based segmentation 
 
2.4 Information Fusion and 3D 

Afterwards, the results of both steps will be consolidated. We 
determine the segmentation with the highest likelihood, where 
the segments of both approaches coincide and the distribution 
of the building segments is the most regular. The latter criteria 
has proven useful to deal with shadows. 
 
Finally, we estimate the width of the buildings as well as their 
height range using the set of 3D line segments that are close to 
the line that the user has initially selected. Spurious matches 
can be eliminated by detecting single outliers in this set. Missed 
matches have less an effect as we don't look at just an 
individual building. Determining the bounding boxes of the 
building roofs in 3D, however, is absolutely necessary in order 
to position the ROIs that show the same building in the various 
overlapping images. These bounding boxes are aligned with the 
direction of the building row (see Figure 6). 
 
 
2.5 Manual Correction 

This whole automatic procedure of segmenting a building row 
into hypotheses of individual buildings takes less than half a 
second. The result of this segmentation can, thus, be presented 
 

 
 

Figure 6. Results after automatic segmentation 
 
to the user in real time. The user has now the possibility to split 
or join segments, or to adjust the width of the building row. 
Even though the user works on only one image, all corrections 
are translated to the respective changes of the 3D bounding 
boxes. The requirements to the accuracy of the segmentation are 
not as high, since this is merely the preprocessing for the later 
building reconstruction. 
 
2.6 Results of the Segmentation 

The scene in Figure 7 depicts the segmentation of three building 
rows, illustrated by the ROIs determined by the projections of 
the 3D bounding boxes into one of the images. One row has 
been segmented with even just the two clicks identifying the 
building row. As part of the manual corrections, two segments 
had to be joined in one ambiguous case for the building at the 
left-hand side and the segments had to be adjusted for the 
irregularly shaped buildings at the city block corners. This 
resulted in less than one second per building. The segmentation 
results are reasonably robust with respect to the position of the 
two initial clicks identifying the building row. 
 
 

3. BUILDING RECONSTRUCTION 

The second phase is the building reconstruction. We use a 
system we have developed that is capable of automatically 
reconstructing individual buildings with high quality and level 
of detail. A more in-depth description of this system can be 
found in (Willuhn, 1997). 
 
3.1 Modeling Building Roofs 

The system uses a knowledge-based approach with a conceptual 
model on top of one that is based on shape. The conceptual 
model takes into account the various roof forms – flat, gabled, 
or in combinations (Figure 8) – as dictated by architectural and 
other considerations. A similar approach was used in (Lang, 
1999). 



 
 

 
 

Figure 7. Results after manual correction 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. Building roof styles: a) gable, b) hip and c) flat 
 
When developing any kind of model, there is a trade-off 
between flexibility and robustness. Having rigid models with 
few parameters gives great robustness. However, few houses 
have these pure architectures. The reconstruction of the 
building roofs in our images demand a greater flexibility, while 
at the same time keeping the system highly robust. For this 
reason, the general roof styles are decomposed into smaller 
elements (Figure 9) that can be assembled in a flexible way. We 
distinguish between conceptual features (e.g. ridge, gutter, roof 
connection, roof border) and conceptual structures (e.g. roof 
corner, gable), capturing the knowledge about the architectural 
elements of building roofs. 
 
The shape model describes a building as a polyhedron. This 
model comes into play when parts or the whole of the roof do 
not conform with any of the conceptual features and structures. 
This model, however, requires a high quality of data in order to 
ensure that the reconstructed object is indeed the roof that is 
captured in the image. 
 
3.2 System Implementation 

We chose a blackboard (Engelmore, 1988) as the general 
architecture because it is a flexible framework, allowing us to  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Conceptual feature and structures for a gabled roof 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Object reconstruction using conceptual models 
 
freely choose representation and techniques for the knowledge 
base, the knowledge sources, and the control structures. The 
data obtained from the images as well as any intermediate and 
final results are stored in a semantic network. A lot of the 
information that has proven useful for this approach is not 
stored in the objects themselves (e.g. contours, segments, roof 
ridges) but rather in the relationships among them (e.g. a roof 
ridge and a roof border forming a roof gable.) All knowledge of 
how to apply our models to the data is coded into rules as part 
of the knowledge sources. Rules consist of a condition and an 
action part. When triggered by the blackboard’s reasoning 
control, the rule finds all objects, relations, or attributes from 
the knowledge base that fulfill a particular condition. It then 
performs its action part, which can add, remove or change data. 
Object recognition requires the explicit dealing with evidences. 
Objects, their attributes and relations, can not determined with 
absolute certainty. Elements of these categories have therefore a 
certainty value associated with them. We decided to use 
possibility theory (Dubois, 1994) for reasoning with evidences, 
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which also comes closest to our goal, that is to determine the 
more plausible interpretation of the images. The blackboard’s 
control is a standard cycle of tracking the changes of the data 
caused by the rules, the rating of the rules, considering also rule 
dependencies, and the execution of the highest-rated rule. 
 
3.3 Reconstruction Process 

The input to the system consists of contours in 2D and 
hypotheses of straight line segments and planar surfaces in 3D.  
The latter are given as the parameters of the plane made up of a 
set of coplanar segments. Rules work at various levels of the 
data as depicted in Figure 10. They 

− Check the data against the constraints given by the 
models, 

− Find and describe instances of higher-level elements 
(upward arrows), and 

− Hypothesize about and verify lower-level elements 
(downward arrows.) 

For the conceptual model, rules detect the conceptual features 
and structures from segments and surfaces in 3D based on the 
concept’s definition, such as a ridge being the line of the 
junction of two surfaces sloping upwards towards each other. It 
is important that these conceptual elements can be instantiated 
without all of their parts being present. A ridge is found with 
merely a single surface, although with a lower certainty value. 
Additional rules infer such missing parts and search for 
evidence in the lower-level data, until the roof is complete. The 
application of extensive architectural knowledge yields high 
robustness, although the choice of conceptual features and 
structures is able to support a variety of roof forms. 
 
A second set of rules reasons about shape in the case that the 
building does not comply with one of the concepts defined. We 
assume a building to be of the general shape of a polyhedron, 
that means a solid figure bounded by planar surfaces. The roof 
surfaces must therefore be completely enclosed by intersections 
with either other roof surfaces or the building’s vertical walls. 
Some rules use this knowledge to discard erroneous matches of 
3D line segments and hypotheses of planar surfaces. Other rules 
search for missing segments or surfaces where a roof surface’s 
boundary is not closed. This alternative, shape-based model 
increases the system's flexibility if the concept-based model 
fails; although the quality of input data is generally not high 
enough to reconstruct a building roof based on this model 
alone. 
 
The rating function of the blackboard control uses information 
about the data elements that each rule needs for execution as 
well as those that it changes as a result in order to determine a 
priority list for invoking the knowledge sources. This particular 
choice of a rating function implicitly favors rules that check 
data over those that create (derive or hypothesize) new data, and 
prioritizes rules that embed more specific knowledge over those 
with more generic one. This yields the desired order of 
execution, even though none particular is given, but rather is 
determined by the input data and the results of each rule. Most 
rules are used more than once when new lower-level instances 
have been created and have to be verified and used for the 
derivation of higher-level information. Therefore, each data set 
will effectively have a different order in which these rules are 
invoked. 
 

3.4 Results of the Reconstruction 

The system to reconstruct the roofs of single buildings has been 
used for both suburban and urban scenes (see (Willuhn, 1997) 
for results on a suburban data set.) Two different systems have 
been used to provide the input data, demonstrating the 
independence from the underlying preprocessing. For this data 
set, the IMPACT system that has been developed by the team at 
KU Leuven provided the input (Figure 11), consisting of 
contours in 2D and segments and planar surface patches in 3D, 
based on ROIs in multiple images for the same single building. 
The output is a description of the building roof in 3D. The 
height value of the ground points of the vertical building walls 
was given as a parameter. It could alternatively be determined 
from a digital terrain model. 
 

         
 

Figure 11. 2D contours of one of the six images and 3D 
segments from segment stereo matching 

 
The results have been achieved after, in short, finding the two 
planes that make up this gabled roof, collecting evidences for 
further segments of the roof borders and roof gutters based on 
these planes, and choosing the most plausible roof outline. 
Figure 12 validates the high quality of the obtained roof 
description. 
 

4. OVERALL RESULTS 

We have applied this approach to four scenes at the corners of 
an intersection in a dense urban part of Brussels, which have 
previously been used for the European IMPACT project. The 
data set contains six overlapping color high-resolution images 
(10cm per pixel) for each scene with internal and external 
camera parameters. We use the IMPACT system for the purpose 
of 2D contour extraction and 3D line segment and planar 
surface reconstruction in both phases. 
 

 
 

Figure 12. Result of the reconstruction 
 



 
 

The user provided input for seven building rows, three for the 
scene at the bottom of Figure 13 (see also Section 2), two for 
the scene at the right-hand side, and one for each of the two 
other scenes. The four scenes, however, do not cover the whole 
intersection. We achieved our goal of segmenting the images 
with less than one click per building. Three building rows were 
segmented with just two clicks, one for the start and one for the 
end of the row. For the other building rows, the user had to 
manually join two segments, extend the segments of the 
irregular corner buildings, and two times adjust the width of the 
building row. 
 
The automatic building roof reconstruction produced high-
quality results for 20 out of the 25 buildings in the scenes. Most 
of the buildings have gabled roofs, two have flat roofs, and four 
buildings at the corners have irregularly shaped roofs. The 
system failed for three corner buildings due to the sole reliance 
on the shape-based model and insufficient quality of the 3D line 
segments and planar surfaces, for one flat-roofed building due 
to strong shadow, and for one building with a gabled roof 
where occlusion hindered the 3D segment matching. 
 

 
 

Figure 13. Final results of segmentation and reconstruction 
 
 

5. CONCLUSIONS 

We have presented a system for the semi-automatic 
reconstruction of building roofs from aerial images. The chosen 
approach demonstrates the advantages of separating the task 
into two phases: (1) the efficiency of the segmentation of large 
aerial images into regions containing single buildings and (2) 
the quality of an automatic reconstruction that can be achieved 
by focusing on individual buildings. The combination of a 
region-based and a contour-based segmentation in 2D and 
fusion of the results with 3D data has been shown effective in 
keeping the user interaction at a minimum. The system for roof 
reconstruction achieves high robustness and flexibility by 
employing both a concept-based and a shape-based model. It is, 
thus, possible to reconstruct about three quarters of the 
buildings with high accuracy and detail with manual interaction 
of on average one click or less per building. 

Several directions for future work are possible. The 
incorporation of additional conceptual knowledge about 
irregularly shaped corner buildings will improve the 
reconstruction of roof forms that still relies on the shape-based 
model and, therefore, demands a high quality of 3D input data. 
The improved interaction between both phases – in particular  
the supply of information about the context of a building row, 
that is its position and direction, to the building reconstruction 
– will improve both speed and quality of the reconstruction 
process. The ROIs are currently aligned with the image axes, 
but should rather take into account the building row’s direction. 
A third direction is the automatic self-evaluation of the final 
results in order to support a fully productive system in which 
the user should be guided to the manual reconstruction of 
missing or correction of wrongly reconstructed building roofs. 
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